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ABSTRACT

Bioinformatics is a quickly emerging field. Next generation sequencing technologies are

producing data up to several gigabytes per day, making bioinformatics applications increasingly

computationally intensive. In order to achieve greater speeds for processing this data, various

techniques have been developed. These techniques involve parallelizing algorithms and/or

spreading data across many computing nodes composed of devices such as Microprocessors,

Graphics Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs).

In this thesis, an FPGA is used to accelerate a bioinformatics application called RMAP,

which is used for Short-Read Mapping. The most computationally intensive function in RMAP,

the read mapping function, is implemented on the FPGA’s reconfigurable hardware fabric.

This is a first step in a larger effort to develop a more optimal hardware/software co-design for

RMAP.

The Convey HC-1 Hybrid Computing System was used as the platform for development.

The short-read mapping functionality of RMAP was implemented on one of the four Xilinx

Virtex 5 FPGAs available in the HC-1 system. The RMAP 2.0 software was rewritten to

separate the read mapping function to facilitate its porting over to hardware. The implemented

design was evaluated by varying input parameters such as genome size and number of reads. In

addition, the hardware design was analyzed to find potential bottlenecks. The implementation

results showed a speedup of ∼5x using datasets with varying number of reads and a fixed

reference genome, and ∼2x using datasets with varying genome size and a fixed number of

reads, for the hardware-implemented short-read mapping function of RMAP.
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CHAPTER 1. Introduction

This chapter gives an overview of the developments in the field of Bioinformatics and its

applicability to society. It sheds light on the need of computation tools and platforms for

processing the data generated by Next Generation Sequencing (NGS) technology. It then

outlines the motivation for this work, followed by the contributions and organization of this

thesis.

Bioinformatics for society. The fields of Bioinformatics and Computational Biology are

growing at a rapid pace. Bioinformatics has been an interface between modern biology and

informatics. It involves discovery, development, and implementation of computational algo-

rithms and software tools that facilitate an understanding of biological processes with the goal

of serving society in several ways. Bioinformatics aims to play a key role in important ar-

eas such as agriculture, bioenergy, and medicine. In agriculture, bioinformatics is being used

to identify genes responsible for various plant traits to increase nutritional content, volume

and disease resistance of agricultural produce [Jung and Main (2011); Mochida and Shinozaki

(2010); Quijadaa et al. (2004a); Paterson et al. (2004); Quijadaa et al. (2004b); Vij et al. (2006);

Close (2011)]. Use of Bioinformatics for improving bioenergy producing species for traits such

as high biomass yield, environmental stress tolerance and high nutrient is contributing towards

increased bioenergy producing species [Shen et al. (2009)]. In the pharmaceutical sector, it

can be used in the drug discovery process to custom design drugs and to develop personalized

medicine [Hanash (2003); Imming et al. (2003)] and for early diagnosis of diseases such as can-

cer [Bravo et al. (2012)]. [Ley et al. (2008)] shows how sequencing the DNA of normal skin

cells and the DNA of tumours can help identify cancer-initiating mutations that alter the gene

sequence of healthy cells.

Need for large scale data processing. Next generation sequencing technologies are capable



www.manaraa.com

2

of generating billions of bytes of data in a single sequencing run, which can take from hours to

days depending on the sequencing technology used [Schuster (2008); Mardis (2008)]. This data

is often of the form of DNA and RNA base sequences, where each base is typically stored using

2 bits to a byte of memory. For example, the Illumina/Solexa Hiseq system can produce up to 3

billion reads within 1.5 to 11 days [NGS (2012)] and the 454 Life Sciences sequencer can generate

a million 100 base sequences a day [Margulies et al. (2005)]. In order to facilitate analysis of

this data, computational tools have been developed. However, these tools often cannot keep up

with the increasing rate of data generation. New computing approaches are being continuously

developed to enable processing and in-depth analysis of such large datasets in a timely manner.

These approaches can be categorized as follows: 1) algorithmic [Langmead et al. (2009b);

Li et al. (2008b)], 2) porting existing algorithms to emerging computing platforms (such as

graphics processors) [Ashwin et al. (2010); Schatz (2009)], 3) designing custom computing

platforms [Olson et al. (2012)], and 4) a combination of the above techniques [CeBiTec (2012)].

A common theme among these approaches are the extraction and exploitation of computational

parallelism, and/or leveraging statistical properties associated with the dataset.

Motivation. With increasing amounts of data being generated by new generation sequencers,

applications can take several hours while executing on a normal PC. One such application

is the popular Bioinformatics application for Short Read mapping called RMAP. RMAP is

used to accurately map reads generated from the afore mentioned next generation sequencing

machines [Smith et al. (2009)]. This work attempts to reduce the turnaround time and improve

performance of RMAP, in particular its read mapping function. The read mapping function

was chosen for acceleration since it is the most computationally intensive function of RMAP.

A custom computing architecture was developed to implement this function in hardware. The

design was implemented on a Convey HC-1 computer, which is a hybrid computing platform

that tightly couples a standard x86 platform with an FPGA subsystem [Convey (2012)].

Contributions. The primary contributions of this work are:

1) a detailed profiling of the latest version of RMAP (RMAP 2.0) software to determine its

most computationally intensive functions,

2) a software-hardware based solution accelerating the basic RMAP 2.0 software functionality
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on a hybrid computing platform (HC-1), and

3) a performance analysis of the implemented solution.

Organization. The remainder of this work is organized as follows. Chapter 2 gives a

background on some major areas in the field of Bioinformatics and outlines the Short Read

Mapping process. It also provides an overview of the computing technology used in this work.

Chapter 3 discusses related work in the areas of accelerating bioinformatics algorithms using

software techniques and custom computing hardware platforms. Chapter 4 gives an overview

of the RMAP algorithm. In Chapter 5, the organization and architecture of the Convey HC-1

system, the platform used for RMAP implementation, is described. Chapter 6 provides an

overview of the software-hardware co-design implemented in this work, and Chapter 7 gives

architecture-level details of the hardware design. The methodology used for evaluating the

hardware architecture is discussed in Chapter 8. Chapter 9 presents analysis of the hardware

design and the data obtained from performance experiments. Chapter 10 concludes this thesis

and suggests areas of future research.
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CHAPTER 2. Background

This section first provides a high-level overview of the field of bioinformatics. The specific

area of “Short Read Mapping” is then discussed in greater detail, since the application accel-

erated in this work is for short read mapping. The section concludes with a brief introduction

to the computing technology used for acceleration, called Field Programmable Gate Arrays

(FPGAs).

2.1 Bioinformatics

Bioinformatics is the science of storing and maintaining databases of biological information,

and developing new and revised techniques to access, process and analyze this information.

These techniques combine the power of computers, mathematical algorithms, and statistics

to uncover useful information hidden in these databases and obtain a clearer insight into the

fundamental biology of organisms. This extracted information has profound impacts on fields

as varied as human health, agriculture, the environment, energy and biotechnology.

Terms and definitions. The biological terms used in this thesis are explained below.

• Genome. The total genetic material of a given organism.

• Deoxyribonucleic acid (DNA). Holds the genetic code for an organism in the arrangement

of four bases: Adenine (A), Thymine (T), Guanine (G) and Cytosine (C). These bases

are called nucleotides.

• Chromosome. Collection of DNA, and proteins that organize an organism’s genome.
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• Reads. Short sequences made up of the four bases A, T, G, C, extracted from a DNA

sample. These sequences can be as large as 400 bases.

• Coverage. Number of reads of length x covering a chromosome site.

• Error rate. The amount of error induced to account for mutations (i.e. a base randomly

changing value) while generating reads.

• Primary structure. Linear arrangement of atoms in a molecule and the chemical bonds

connecting them.

• Secondary structure. Areas of folding or coiling within a molecule.

• Tertiary structure. Three-dimensional structure, as defined by the atomic coordinates.

Algorithms based on mathematical and computer science principles have been developed for

the bioinformatics areas of sequence alignment, structure prediction, sequence assembly, phy-

logenetics, system biology, gene prediction, motif finding and comparative genomics [Sequence

and Genome Analysis (2004)]. These algorithms have complexities ranging from polynomial

time to exponential time. Brief definitions of a few of these bioinformatics areas and the

algorithms used for them are given in the following paragraphs.

Sequence Alignment. Is used to determine the similarity and function relatedness between

two or more sequences. For example, if a new sequence is obtained from genome sequencing,

then the first step is to look for similarities to known sequences found in other organisms. If the

function/structure of similar sequences/proteins is known, then it is highly likely that the new

sequence corresponds to a sequence/protein with the same function/structure [Sequence and

Genome Analysis (2004)]. An optimal alignment is where arrangement of the two sequences is in

a way that the number of mutations is minimal [Bioinformatics I (2008)]. Sequence alignments

can be global or local. A global alignment is an optimal alignment that includes all characters

from each sequence, whereas a local alignment is an optimal alignment that includes only

the most similar local region or regions [Krawetz and Womble (2003)]. Dynamic Programming

[Eddy (2004)], Hidden Markov Models [Eddy (1995)] and Longest Common Subsequence [Sahoo

and Padhy (2009)] are techniques that are often used for developing efficient sequence alignment
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algorithms [Jones and Pevzner (2004)]. Two widely used alignment algorithms that are based

on dynamic programming are the Smith Waterman algorithm [Boukerche et al. (2007)] for local

alignment and the Needleman-Wunsch algorithm [Needleman and Wunsch (1970)] for global

alignment.

Structural Alignment. Is used to establish similarity between two or more molecule struc-

tures by comparing them based on their shape. It is a useful tool when the sequences to

be compared have low sequence similarities due to major evolutionary changes [Bourne and

Shindyalov (2003)]. This technique is mainly used for protein and to some extent for RNA

molecules. DALI [Holm and Sander (1993)] and Combinatorial Extension (CE) [Bourne and

Shindyalov (1998)] are two standard protein structural comparison methods. SETTER (SEc-

ondary sTructure-based TERtiary Structure Similarity) [Hoksza and Svozil (2012)] is a program

used for RNA structural comparison.

Structure Prediction. Is a technique used to determine the secondary and tertiary structure

of protein (amino acids) or nucleic acid sequences (DNA, RNA) on the basis of their primary

structure [Sequence and Genome Analysis (2004)]. Structure prediction can provide meaningful

insights into the nature of protein or nucleic acid structures and their functional mechanisms.

SFOLD [Ding and Lawrence (2003)] is a statistical tool for RNA secondary structure prediction.

Chou-Fousman [Chou and Fasman (1974)] and GOR [Garnier et al. (1996)] are two statistical

based methods used for protein structure prediction.

Sequence Assembly. Is the process of placing fragments of DNA that have been sequenced

into their correct position within a chromosome. SHARCGS [Dohm et al. (2007)] and SSAKE

[Warren et al. (2007)] are examples of Greedy graph based assemblers. Newbler [Margulies

et al. (2005)] and Celera [Myers et al. (2000)] are examples of Overlap-Layout-Consensus based

assemblers. Abyss [Simpson et al. (2009)] and Velvet [Zerbino and Birney (2008)] are examples

of de Bruijn Graph based assemblers.

Phylogenetics. Is the study of relatedness among organisms through their morphological

(form and structure of organisms) or molecular characteristics. Phylogenetic analysis helps bi-

ologists in making predictions about fossils, learning about evolution of complex features, and

making predictions about poorly-studied species [W. E. Stein (1987); Labeda et al. (2012)].
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Methods for phylogenetic analysis include statistical methods such as Maximum Parsimony

[Swofford and Begle (1993)], Bayesian Inference [Yang and Rannala (1997)] and Maximum Like-

lihood [Yang (2007)] and Genetic Algorithm-based methods [Helaers and Milinkovitch (2010)].

2.2 Short Read Mapping

Short Reads. Reads are generated through sequencing, which is the process of determining

the order of nucleotides in a DNA fragment. A sample is fed into the sequencing machines

and the sequences generated are fragments read from a longer DNA molecule present in the

sample [NGS (2012)]. These fragment sequences are called reads. Since they are typically

25-400 bases in length, they are termed as short reads. Before the advent of New Generation

Sequencing technology, these reads were produced using capillary electrophoresis (CE)-based

Sanger sequencing [Sanger and Coulson (1975)] method, which was slow and expensive [Schuster

(2008)]. Now, with new generations of DNA sequencers, billions of reads can be generated

rapidly and inexpensively [Schuster (2008)].

Short Read Mapping. Is when a collection of short reads are individually sequence aligned

(i.e. mapped) to a known genome called a reference genome [Trapnell and Salzberg (2009)]. The

mapping of reads onto the reference genome can be based on different criteria. For example,

exact mapping will only align a read to the reference genome if an alignment is found that has

no mismatches. If, however, mutations are to be considered, then an approximate alignment

can be performed that allows some threshold of mismatches. Another reason for allowing for

approximate mapping is to account for inserted or deleted (indel) bases by allowing gaps in the

alignment of a read to the reference genome.

Challenges of mapping short reads. The two main challenges posed by short read mapping

are as follows.

1) Resources and speed. When mapping involves a large reference genome, for example the

human genome which contains 3 billion nucleotides and an equally large number of short

reads, the mapping problem can become computationally intensive. This results in increased

usage of CPU and memory resources leading to long execution times on standard processors

[Trapnell and Salzberg (2009)].
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2) Accuracy. A genome can have repeats, which are multiple copies of the same base sequences

across the genome. If a read was extracted from a repeat location, then it becomes difficult

for the mapping software to decide which of the locations the read belongs to. In addition,

mutations and sequencing errors can also affect the accuracy of the mapping [Trapnell and

Salzberg (2009)].

Algorithms targeting these issues are being actively worked upon.

Short read mapping algorithms. To overcome the challenges posed in mapping short reads,

short read mapping algorithms are designed to have a low memory footprint, good mapping

speed, high accuracy and sensitivity. The most commonly used algorithmic method for short

read mapping are indexing-based solutions [Pevzner and Waterman (1995)], which attempt to

find subsequences of each read that match perfectly to a location in the reference genome and

evaluate only these reads with the genome [Smith et al. (2009); Lin et al. (2008)]. RMAP, an

indexing-based solution, maps 8 million reads per hour to the human genome, allowing two

mismatches, at full sensitivity [Smith et al. (2009)]. Another common method is the Burrows-

Wheeler transform [Burrows and Wheeler (1994); Langmead et al. (2009b); Li and Durbin

(2009)]. The Burrows-Wheeler transform starts with a large list of possible locations to which

the read could align and iteratively reduces the list to a small set of locations. Bowtie, based

on Burrows-Wheeler transform, aligns short DNA sequences (reads) to the human genome at a

rate of over 25 million 35-bp reads per hour on a normal workstation [Bowtie (2012)]. However,

these tools are run sequentially on general purpose processors, which creates a bottleneck for

high performance. Hence, computing platforms for parallel execution of mapping algorithms

are needed.

2.3 Field Programmable Gate Array (FPGA)

Traditional general purpose processors tend to be inherently sequential. Thus they do not

efficiently support extracting the parallelism in an application. Field Programmable Gate Ar-

rays (FPGAs) on the other hand have fine-grained parallelism, which allows them to explicitly

realize parallelism that traditional processors cannot. An FPGA is an integrated circuit de-

signed to be configured by a customer or a designer after manufacturing. Hence the name
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Figure 2.1: FPGA fabric with CLBs, interconnect and I/O blocks.

“field-programmable”. An FPGA is a sea of reconfigurable logic and programmable routing

for realizing digital circuits.

Figure 2.1 shows the FPGA fabric with configurable logic blocks, interconnects, and I/O

pins. The basic components of an FPGA are [Xilinx (2012)]:

1) Configurable Logic Blocks (CLBs). These are the programmable logic blocks in an FPGA.

Every CLB has a configurable look up table (LUT), which can be configured to implement

combinational logic functions. They also contain memory elements, which when coupled

with the LUTs can be used to implement registers for sequential logic.

2) I/O Blocks. The Input/Output blocks make it possible to connect the FPGA resources

to elements outside the FPGA. These are divided into banks and each bank supports a

particular I/O standard.
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3) Interconnect/Routing. These are the wiring resources of the FPGA that connect the logical

blocks, I/O blocks and other resources. Within each CLB, the logic elements are connected

using interconnects. The interconnects also connect CLBs to each other and to I/O blocks

to implement larger functions.

FPGAs also contain additional features, such as digital signal processing (DSP) blocks and

large memories (i.e. Block RAMs) with low latency access.
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CHAPTER 3. Related Work

This chapter is divided into three parts. The first part discusses accelerating bioinformatics

applications, followed by the use of FPGAs for accelerating such applications. The second part

focuses on Short Read Mapping acceleration techniques. The last part goes on to explain the

related work done in accelerating RMAP.

3.1 Accelerating Bioinformatics Applications

Bioinformatics tools involve intensive computing leading to long application run-times.

Techniques have been proposed in [Smith et al. (2009); Gálvez et al. (2010); Schatz et al.

(2007); Mount (2004); Zhang et al. (2007)] to address this issue and accelerate applications.

[Smith et al. (2009)] uses cache optimization techniques to reduce the memory footprint of

the software and spaced-seed filtration of reads to reduce the amount of data involved in read

mapping. In [Gálvez et al. (2010)], a sequence alignment algorithm called FASTLSA [Driga

et al. (2003)] is implemented on the Tile64 processor by splitting computation across the 64

cores of the processor. A speedup of up to 20x is achieved over the non-parallelized version.

MUMmerGPU [Schatz et al. (2007)] is an application from NVIDIA’s Tesla Bio Workbench.

In MUMmerGPU, the Compute Unified Device Architecture (CUDA) programming language

was used to develop a Graphics Processing Unit (GPU) implementation for multiple sequence

alignment of sequences against a reference sequence stored as a suffix tree. The multiple se-

quences are processed in parallel using the highly parallel architecture of the GPU to achieve

a speedup of 3.5x in total application time over MUMmerGPU running on a high-end CPU.

Due to their inherent parallelism and reconfigurability, the use of FPGAs for accelerating

bioinformatics applications is increasing. In [Chen et al. (2009)], FPGA hardware is used to
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accelerate the filtration stage of BLASTN [BLAST (2012)], a widely used sequence alignment

tool for DNA sequences. An efficient bloom filter, a space-efficient hashing data structure,

based architecture is implemented on the FPGA to replace the software-based filtration stage

of BLASTN. In [Kasap et al. (2008a)], the authors present the first FPGA-based core imple-

mentation for accelerating the Gapped BLAST sequence alignment tool. Their results show

substantial speedup compared to software only implementation, ranging from 20x to 44x. The

XtremeData XD1000 [XtremeData (2006)], a hybrid FPGA computing platform, has been used

in [Zhang et al. (2007)] to accelerate the Smith-Waterman algorithm [Boukerche et al. (2007)],

for both DNA and protein sequences. The Altera FPGA coprocessor of the platform imple-

ments a multistage processing element (PE) design having 384 PEs in a systolic array [Kung

and Leiserson (1978)]. The design attains a speed-ups 185x and 250x for DNA and protein se-

quences respectively, as compared to executing on the 2.2GHz AMD64 Opteron host processor

of the XD1000 platform.

3.2 Short Read Mapping Acceleration

Next generation sequencers are generating reads at a rate that is overwhelming current

short-read mapping tools. Techniques have been developed to accelerate these tools, employing

both algorithmic as well as novel computing platform.

Algorithmic techniques. Given the large size of read sets, comparing each read with each

chromosome position for mapping is not feasible. Hence, short read mapping algorithms filter

poor matching reads before performing a full comparison. They use filtering strategies such as

Burrow-Wheelers transform [Burrows and Wheeler (1994)], masking with seeds for hash table

indexing (spaced seed approach) [Pevzner and Waterman (1995)], suffix array [Abouelhoda

et al. (2004)] and non-deterministic automata matching [Holub and Melichar (1999)]. For

example, RMAP [Smith et al. (2009)], ZOOM [Lin et al. (2008)], SHRiMP [Rumble et al.

(2009)], MAQ [Li et al. (2008a)] and RazerS [D et al. (2009)] use a spaced seed approach for

filtering. Tools like Bowtie [Langmead et al. (2009b)] and BWA [Li and Durbin (2009)] use the

Burrow-Wheelers transform method for filtering, while Segemehl [Hoffmann et al. (2009)] uses

a suffix array technique. PatMaN (Pattern Matching in Nucleotide databases), a fast, short
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read alignment tool implements non-deterministic automata matching [K et al. (2008)].

Computing platforms. [Liu et al. (2012); Langmead et al. (2009a); Kasap et al. (2008b);

Olson et al. (2012)] present the use of new computing platforms for the acceleration of short read

mapping applications. [Liu et al. (2012)] implement SOAP3 using multiple cores in a GPU to

achieve speedups of at least 7.5x and 20x, as compared to BWA and Bowtie respectively, while

aligning millions of short reads to a human genome. Crossbow [Langmead et al. (2009a)] is a

hadoop [Hadoop (2012)] based short read aligner that uses a cloud computing based approach

for short read mapping. It combines the speed of Bowtie and mapping accuracy of SOAPsnp

[Li et al. (2009)]. It aligns reads with 38-fold coverage of the human genome under 3 hours on a

320-core cluster from Amazon’s Elastic Compute Cloud (EC2) [Amazon EC2 (2012)] service. In

[Kasap et al. (2008b)], an FPGA-based custom design implements an exact mapping algorithm

using a brute force approach to compare short sequences in parallel to a reference genome

from genome databases. For performance analysis, 100,000 reads of length 50bp taken from

a chromosome of the human genome with 222,389,117 base pairs is used. Results indicate

high sensitivity to genetic variations in short reads, as compared to Bowtie and Maq with

computation speed similar to that of Bowtie. Another FPGA-based approach is used in [Olson

et al. (2012)] to accelerate the algorithm used by the BFAST mapping software [Li et al.

(2008a)]. A 250x speed up versus the original BFAST software and a 31x speedup against

Bowtie is reported. Shepard is an exact matching short read aligner tool implemented on the

Convey HC-1 hybrid-core reconfigurable computing system. For exact matching, Shepard is

hundreds of thousands of times faster than SOAP2 or Bowtie, and about 60 times faster than

the GPU-implemented SOAP3 [Nelson et al. (2012)].

3.3 RMAP Acceleration

[Ashwin et al. (2010)] and [Schatz (2009)] present a GPU-based and cloud-based imple-

mentation, respectively, for improving the performance of RMAP. The RMAP algorithm is

presented in Chapter 4. GPU-RMAP [Ashwin et al. (2010)] accelerates the latest version of

RMAP [Smith et al. (2009)] by implementing its genome-mapping function on a GPU. For the

mapping function, the input reference chromosome is divided across multiple GPU threads.
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The short reads are passed to each GPU thread, and all threads access the same binary tree

made from the reads for performing binary search. The results of the mapping function are then

passed to the CPU for further processing. With respect to the CPU implementation, GPU-

RMAP shows a speed-up of 14.5x for the mapping function and 9.6x for the overall application.

CloudBurst [Schatz (2009)], a parallel short read mapping algorithm, is modeled after an ear-

lier version of RMAP [Smith et al. (2008)]. It uses the open-source Hadoop implementation of

MapReduce to execute the design on multiple compute nodes of a cluster. CloudBurst running

on a 24-core configuration is up to 30 times faster than RMAP running on a single core. When

run on a 96-core Amazon EC2 cloud cluster, a speed-up of 105x was observed.

In this work, the short-read mapping function of the latest version of RMAP is implemented

on Convey’s HC-1 hybrid-core system. It is the first FPGA-based solution for accelerating a

part of the RMAP software.
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CHAPTER 4. RMAP

In this work, the latest version of the RMAP short read mapping application [Smith et al.

(2008)] is accelerated. This chapter gives an overview of RMAP’s features and describes its

spaced-seed filtration technique in detail. The RMAP algorithm for carrying out short read

mapping is then outlined along with a description of each phase of the computation. This is

followed by detailed profiling and performance analysis of the application.

4.1 Overview

RMAP is a short read mapping tool introduced by Smith et al. (2008) to accurately map

short reads generated from next generation sequencers. RMAP was originally designed to

map reads from Illumina sequencers and can map reads of length ranging from 25-50 bases.

Two important features of RMAP that improve its mapping accuracy are the consideration

of information in 3’ ends of longer reads and the use of quality scores for improving mapping

accuracy. In addition, RMAP supports weight-matrix matching and wild-card matching modes

using quality scores for improving accuracy. The idea of a quality score is to assign a probability

for each base at a given position in a read, and based on this assign a score for the read position

itself [Ewing et al. (1998)]. This score is used to determine whether the read position should

be considered for mapping, based on a cutoff value which is adjustable by the user.

The inputs to RMAP are a set of reference genomes and a set of short reads. The output is

composed of three pieces of mapping information for each read that maps on to the reference

genome: 1) the best mapping location (site) on the chromosome, 2) the corresponding map

score, and 3) strand of the reference genome (i.e. the chromosome considered in its original

form (forward strand) or reverse-complement form). The genome file is in FASTA format, while
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the reads file can be in FASTA, FASTAQ, or PRB format. FASTAQ and PRB include quality

score information for each base in the read set.

RMAP features. The latest version of RMAP supports mapping three types of reads: normal

reads, paired-end reads and bi-sulphite treated reads. The same mapping algorithm is used for

all three read types, which is outlined in Section 4.2. RMAP supports three mapping modes:

1) mapping with mismatches, 2) mapping using wildcards, and 3) mapping using weight-matrix

matching. The user can set mapping parameters such as:

1) read width

2) number of seeds

3) number of allowable mismatches

4) number of best maps allowed

5) redirection of ambiguous reads to a file

6) use of quality scores

7) use of wildcard matching mode

This latest version of RMAP uses spaced-seed filtration technique, giving it improved accuracy

over its predecessor. It is also structured to have better cache performance.

Spaced-seed filtration. The purpose of spaced-seed is to reduce the number of reads compared

to any given location in the reference genome. A spaced seed is a pattern of 0’s and 1’s that is

masked with the set of reads input to RMAP. The reads whose bases match in the 1’s location

are grouped together. When a section of the reference genome is processed, only the group

of reads that match the section masked with the seed are considered for a full (base by base)

comparison against the genome. The spaced seed technique helps in improving the specificity

(i.e. the fraction of the sequences predicted as matches that really are true matches) of the

algorithm by eliminating non-matching reads with the help of the spaced structure.

4.2 Algorithm

While the primary function of RMAP is the mapping of reads onto a reference genome, pre-

processing of inputs and post-processing of results are also important aspects of the algorithm.

The RMAP algorithm can be divided into the following steps, as illustrated in Figure 4.1.
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Figure 4.1: RMAP Algorithm.

1) Input data processing. Reading chromosomes and reads from input files. Decomposing

the reads into “upper”, “lower” and “bads” structures.

2) Forming a read-keys table. Masking the reads with a seed; the masked values form keys

of the read-keys table.

3) Short read mapping. Processing the reference genome chromosomes to pass as keys

to be searched in the read-keys table. Splitting them into “upper”, “lower” and “bads”

data for scoring against reads. Performing a search for each chromosome key, scoring the

chromosome with the reads at the matched location and storing them.

4) Results processing. Eliminating ambiguous reads from the stored mapping results and

printing results to a file.

Step 2 and 3 are executed for each seed, and are performed to map against the forward and

reverse complement of the reference genome. Thus steps 2 and 3 are performed twice for each

seed. Step 4 is performed once after processing the first seed. This is to filter out the “bad

reads”, reducing the number of reads processed by the remaining seeds. It is also run after all

the seeds have been processed to eliminate ambiguous reads from the mapping results of all
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seeds. These steps are explained in greater detail in the following section.

4.3 RMAP Modules

The following describes the main phases of RMAP, and reviews the data structures used

and the various computations involved in each phase.

1) Input data processing. Chromosomes are read from the input file in the form of strings

and are stored in a vector; this data represents the forward strand of the chromosome. The

vector corresponding to the reverse-complement chromosome strand is created by taking

the complement of each base, starting from the last base in the forward chromosome strand.

Reads, each 36 bases wide, are read from the input file and encoded in a two bit structure,

with A, C, G and T bases corresponding to 00, 01, 10 and 11 respectively. Each encoded

base gets divided into “upper” - upper bit of the two bit encoded structure, “lower” - lower

bit of the two bit encoded structure, and “bads” - which is ‘1’ when a base is unusable for

mapping. Thus each read is composed of a data structure having “upper”, “lower” and

“bads” data. Each read has a name associated with it which is read from the input file

and stored in another vector. This indicates the position of the read in the chromosome

from where it was extracted. For each read, a maximum of two sets with the three pieces

of mapping information can be stored. Both the sets are stored in a vector of size equal to

the number of reads. Thus, each read is associated with “upper”, “lower”, “bads”, “score

of the first best map”, “score of the second best map (equal to first)”, “mapping location

on the chromosome” and “strand of the chromosome”.

2) Read-keys table formation. The read-keys table is used for exact matching of read-keys

and chromosome keys to filter out the non-matching reads. The seeds used in RMAP are

64-bit wide and a read-keys table is formed for each seed. Each read is 36-base wide (72 bits

after encoding), hence it is truncated to 32 bases to form a 64 bit read-word. Each 64-bit

read-word is then masked (i.e. bitwise ‘AND’ed) with the seed forming a read-key. Each

read-key is associated with a value which is the index of the read from which it was formed.

The read-keys and the associated read indices are stored as pairs in a vector called “seed-

keys table”. Many of the reads when masked with the seed may result in the same read-key.
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The vector container is sorted to group duplicate read-keys using an internal sort function

provided by the STL vector library. The read indices associated with these duplicate read-

keys are grouped together, resulting in a single read-key being associated with a set of read

indices. An unordered map data structure (read-keys table) is then formed with the read-

keys acting as keys and the starting and last index of a duplicate read set acting as a pair

of values.

3) Short read mapping. This module identifies reads mapping to a particular chromosome

site and scores the mapping. The chromosome bases stored in the chromosome string vector

are converted to the two-bit encoded structure, which is then processed to form chromosome

“upper”, “lower”, “bads” and “chromosome word” in a manner similar to the reads. The

chromosome word is masked with the seed in use to form a chromosome key and is searched

in the read-keys table for possible matches with the read-keys. For a matched chromosome

key, the pair of read indices associated with it is fetched. The reads corresponding to these

indices are then retrieved, and scored by comparing their “upper”, “lower” and “bads”

data with that of the chromosome section (associated with the matched chromosome key).

A score is considered valid if it is less than a user defined threshold, which specifies the

maximum mismatches allowed while mapping. If a score is found to be valid, the score,

location of mapping on the chromosome, and the strand of the chromosome are stored

for that read in the best mapping information vector described earlier. The second set of

mapping information for a read is updated if the first set of information is already recorded

and the current mapping score for that read is equal to the score in the first set.

4) Results processing. This is the last phase of RMAP, wherein the best mapping informa-

tion vector is traversed to look for ambiguous reads. If a read, with both of its best mapping

information recorded, maps to two different chromosome sites with the same score, then it

is considered ambiguous and is eliminated. After eliminating the ambiguous reads, the best

maps information for the non-ambiguous reads are written to an output file.
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Table 4.1: RMAP parameters.

Parameter Value
mapping mode mapping based on mismatches
chromosome strand forward
read length 36
maximum mismatches 3
seeds 1
best mapping informationfor each read 2

4.4 RMAP Profiling

Using the RMAP parameters specified in Table 4.1, several performance profiling experi-

ments were conducted. These experiments helped determine the most computationally intensive

function across various input datasets. Gprof (a Linux GNU profiling tool) was used to profile

RMAP. Upon profiling, the map reads function was found to be most computationally inten-

sive. The processing time of this function was found to increase with an increase in problem

size. For mapping 260 Million reads on to the complete human genome, which is the largest

problem size shown here, it was found to take 90% of the total time. All profiling experiments

were performed on the HC-1 host processor, described in Chapter 5.

Profiling and analysis. RMAP was profiled using three input datasets and the execution

times of the five most computationally intensive functions were recorded. Figures 4.2, 4.3 and

4.4 show the results of these experiments. These results are also presented in the table shown

in Figure 4.6. For each experiment, a read coverage of 40 was used. As can be seen, as the

size of chromosome and number of reads increases (i.e. input size increases), the portion of

RMAP’s execution time spent in the map reads function increases.

Another experiment was performed using the human genome, which has 3 billion bases,

with a read coverage of 3 (Figure 4.5). The results indicate that 90% of the total execution

time for this dataset is spent in map reads. For large datasets, map reads is clearly the most

computationally intensive function in RMAP, and thereby an ideal candidate for acceleration.

The human genome generated by the 1000genomes project [1000 Genomes (2010)] was used for

this profiling and it can be downloaded from http://www.1000genomes.org/data.

http://www.1000genomes.org/data
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Figure 4.2: Five most computation intensive functions of RMAP for 1 million base genome with 1 million reads.

0

5

10

15

20

25

map_reads WordPair make_read_word sort_by_key build_seed_
hash

P
er

ce
n

ta
ge

 o
f 

to
ta

l t
im

e 
(%

) 

RMAP functions 

100 million base genome and 100 million reads 

Figure 4.3: Five most computation intensive functions of RMAP for 100 million base genome with 100 million
reads.
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Figure 4.4: Five most computation intensive functions of RMAP for 200 million base genome with 200 million
reads.
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Figure 4.5: Five most computation intensive functions of RMAP for 3 billion base genome (human genome) with
260 million reads (coverage 3).
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Figure 4.6: Data showing the five most computation-intensive functions of RMAP for the four datasets used.
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CHAPTER 5. Platform

This chapter gives an overview of the Convey HC-1 system [Convey (2012)], the computing

platform used in this work. It describes the architecture of the platform, lists some of its

features, and its applicability for this work.

5.1 HC-1 system

System organization. The Convey HC-1 system is a hybrid computer containing two pro-

cessor architectures: a 2.4 GHz, eight core Intel host processor and a reconfigurable coprocessor

based on FPGA technology, as shown in Figure 5.1. It has a two socket motherboard, with

the host processor in one socket and the coprocessor in the other. Both the host processor and

the coprocessor share the same global memory space. However, the physical memory is laid

out in such a way that both the host processor and coprocessor are associated with certain

regions of this memory space (256 GB and 64 GB respectively) to which they have the fastest

access. Within an application, both use the same virtual address to access a particular physical

location. The coprocessor is typically used for implementing custom instruction sets which are

Intel 
processor 

Intel 
chipset 

I/O 

DIMM 
channels 

Commodity Motherboard 

Coherent memory controller 

Host 
interface 

Application engines 

Coprocessor 

Coprocessor DIMM channels 

Figure 5.1: Convey HC-1 system organization.
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highly optimized for the application being accelerated.

Coprocessor organization. The coprocessor architecture has three major components: 1)

Application Engine Hub (AEH), 2) Application Engines (AEs), and 3) Memory Controllers

(MCs). The coprocessor organization is shown in Figure 5.2.
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Figure 5.2: Coprocessor organization.

1) Application Engine Hub (AEH). This acts as an interface between the host processor

and the AEs. It has an instruction fetch-and-decode unit, and processes scalar instructions.

It processes data fetch requests from the host processor to the coprocessor memory by

routing these requests to the MCs.

2) Application Engines (AEs). These contain the four reconfigurable units of the Convey

system. Each unit is a Xilinx Virtex 5 LX330, FF1760 FPGA. The AEs are used to imple-

ment custom designs for accelerating an applications. The AEs are connected to the AEH

by a command bus that transfers opcodes and scalar operands. They are also connected to

memory controllers via a high bandwidth network of point-to-point links.

3) Memory Controllers (MCs). The coprocessor architecture has eight memory controllers

(MCs), each supporting two DDR2 memory channels connected to the global memory space,

providing an aggregate of 80GB/sec bandwidth with scather-gather DIMMs. The MCs

translate the virtual addresses to physical addresses for the AEs.

Memory Controller Interface. The eight memory controller interfaces connect the AEs
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directly to the memory controllers, and each MC physically connects to 1/8 of the coprocessor

memories. The AEs and MCs are linked by a 300 MHz bus. However, in order to ease timing

in the FPGA, the 300 MHz interface is converted into two 150 MHz memory ports (odd and

even) to/from the AE personality.

Personality. Is a term used to refer to the set of instructions implemented by the design

running on the coprocessor. These instructions can be seen as an extension to the host processor

instruction set. The HC-1 system is capable of switching between multiple personalities to

execute different types of code, but only one personality can be active on the coprocessor at

any given time. Each personality is associated with an ID or a personality number and using

these IDs, the system can load different personalities on the AEs and switch between them. A

Personality is installed on the coprocessor using a bitfile (generated by Xilinx tool chain) which

contains the coprocessor instruction set for that personality.

Coprocessor programming model. When an application is implemented on the coproces-

sor of the HC-1, it contains both host processor and coprocessor instructions and control is

switched between the two using cache coherence hardware to minimize latency. Before the ap-

plication is started, the personality for that application is installed on the coprocessor. When

the application starts running on the host processor, a block of instructions is dispatched to

the coprocessor. These instructions initialize the coprocessor and load arguments passed by

the host processor into the coprocessor registers. While the coprocessor is executing, the host

processor can continue its operation or wait for the coprocessor to finish, depending upon the

application’s requirements.

Performance monitor tool. The HC-1 system provides a performance monitor tool for the

design implemented on the coprocessor. This tool lists for each AE, the number of clock cycles

it runs, the load/store count for each MC, stalls encountered during load/store by each MC,

and memory bandwidth utilization. A performance monitor flag “PERFMON” needs to be set

while generating the bit file to enable the tool for performance data collection.
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5.2 Applicability of HC-1 platform for RMAP.

The Convey HC-1 system can provide good performance and ease of implementation for

RMAP, by virtue of some of its salient features which are listed below.

• Ease of HW/SW co-design. Based on the results from Section 4.4, the reads mapping

function is found to be the most computationally intensive function in RMAP. The hybrid-

core computing feature of the HC-1 system helps in separating the reads mapping function

from the rest of the software, and implementing it on the coprocessor, in addition to

providing a highly abstract interface for transferring control between the two. The reads

mapping function implemented on the coprocessor can thus be invoked as just another

function from the RMAP code running on the host processor.

• Shared global memory space. The mapping function implemented on the coprocessor

is memory intensive, especially the Chroms key search unit described in Chapter 7. By

placing the arrays accessed by the coprocessor in the physical memory region (referred to

as coprocessor memory) to which it has the fastest access, the memory access latencies can

be greatly reduced. Also, the Convey operating system and compilers provide mechanisms

to allocate data in the appropriate region(s) of memory, both statically as well as by

migrating data at runtime. For faster software processing, data can be allocated in the

host memory initially and then can be moved to the coprocessor memory if it is being

accessed by the coprocessor.

• Parallel memory access. The Convey system provides eight memory controllers, each

having an even and odd port, effectively making it a total of 16 memory controllers for

the coprocessor memory. All of these controllers can work in parallel to service data read

and write requests. In this work, data fetch requests for some of the arrays (described in

Section 7.4.2) are placed in the coprocessor region of memory. By allocating these arrays

such that they are on different memory controllers, high bandwidth parallel data fetch

can be performed.

• Crossbar switch, fetch request read order and write complete interface. The
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user does not have to worry about ensuring that FPGA memory requests are sent to the

appropriate MCs. The “crossbar switch” feature abstracts the user from the MC layer,

and routes the requests to the correct MCs. Also, the “MC read order” feature ensures

that data is received in the order in which it was requested, helping to ease implementing

designs where inorder processing is required. The “write complete interface” indicates

completion of a write to memory. This prevents the hardware design from reading stale

data, which is important for the read mapping function.
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CHAPTER 6. Architecture Overview

This chapter describes how RMAP is laid out on the hybrid architecture of the Convey

HC-1 system. RMAP is implemented as a HW/SW co-designed solution, with the software

running on the Host processor and the custom hardware on the Coprocessor of the Convey

system, as shown in Figure 6.1. The software running on the host processor (software unit)

calls the coprocessor (hardware unit) via a coprocessor function call and provides the required

data as input (arguments) by means of load instructions (described in low level assembly) which

move the data into coprocessor registers. After the hardware completes execution, the results

of the hardware unit are passed back to the software unit for post processing. Details of both

units are provided next.
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Figure 6.1: RMAP Software-Hardware Architecture.
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6.1 Software Unit

The software component of RMAP executes on the host processor of the HC-1 system. This

section describes the functionality of the software unit and the differences with respect to the

original RMAP functionality detailed in Section 4.2.

The basic RMAP code (Chapter 4) was modified to facilitate ease of porting the read

mapping function to the FPGA on the convey coprocessor. The code was redesigned while

retaining the basic functionality, and transforming complex data structures such as Standard

Template Library (STL) containers into arrays. This simplified allocating memory and passing

addresses to the hardware design. An unordered map data structure, used for building the

“read-keys table”, is one of the data structures that was replaced with a two dimensional array

in this modified version of RMAP.

The following lists the modules in the RMAP code and describes how this modified version

differs from the one described in Section 4.2.

1) Input data processing. The chromosomes that are read from a file are stored in a

character array instead of a vector. As in the original code, the reads are read from the

input reads file and are separated into “upper”, “lower” and “bads”, and stored in separate

arrays (reads upper array, reads lower array and reads bads array respectively). The names

for each read are stored in another array. The vector for storing the two sets of best mapping

information is replaced by a set of arrays. Two arrays (score1 and score2) are created to store

the first and second set of scores and another two (chrom ID1 and chrom ID2) for storing

the sites of best mapping. The strand is common for the two sets of mapping information,

and is hence stored in a single array.

2) Forming a read-keys table. The seeds are read from an input seed file to avoid using

complex data structures associated with seed generation. Only one seed is used for this im-

plementation. In the modified code, the “seed-keys table” is a two column, two dimensional

array with read-keys (reads masked with seed) in the first column and read indices in the

second. This table is sorted using merge sort algorithm, so as to group similar read-keys

together. These sorted read-keys, and the first and last read indices associated with each
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read-key (as a result of sorting) are put in a new two dimensional array with three columns.

The first column contains the read-keys, and the second and third columns contain the first

and last read indices respectively. This two dimensional array acts as the “read-keys table”

replacing the unordered map structure used in the original RMAP code.

3) Short read mapping. This is the section of RMAP chosen for acceleration, and is imple-

mented as an FPGA-based custom hardware design on the coprocessor. It is invoked from

the software via a coprocessor function call. The arguments to this coprocessor function

are: chromosome array starting address, chromosome array ending address, read-keys table

starting address, read-keys table ending address, reads upper array base address, reads lower

array base address, reads bads array base address, score1 base address, score2 base address,

chrom ID1 base address, chrom ID2 base address, strand array base address, current seed

and max mismatches. The output of the hardware unit is the best maps information for

each read. This information is stored in arrays that were allocated during the “Input data

processing” step of RMAP.

4) Results processing. This part works similar to that in the original RMAP code. The only

difference is that the processing of best mapping information for identifying and eliminating

ambiguous reads involves arrays as opposed to the vectors used in RMAP.

6.2 Hardware Unit

The hardware unit implements the mapping function of RMAP on one of the Application

Engines (AEs) of the HC-1 coprocessor. This section provides an overview of the modules in the

hardware design for the mapping function. The software unit uses a coprocessor function call

to pass arguments to and start the hardware engine. The arguments passed to the hardware

unit are listed in Section 6.1.

The following gives a brief summary of the modules within the hardware unit. Chapter 7

provides further details for each module.

Chroms process unit. This unit processes the input chromosomes that were stored in

a character array by the software unit. It has the following sub-units: Chroms fetch unit,
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Chroms split and shift unit and Chroms key process unit. The Chroms fetch unit performs the

function of fetching chromosomes from the array. The Chroms split and shift unit encodes each

fetched chromosome base (8 bits), separates the encoded base into “upper” bit, “lower” bit,

and “bads” bit, and combines this data for the incoming chromosome bases to form three 36-bit

wide “upper”, “lower”, and “bads”, which is stored in registers. The chromosomes’ upper and

lower are passed to the Chroms key process unit to form 64-bit chromosome keys. The output

of Chroms key process unit is sent to the Chroms key search unit. The chromosomes upper,

lower and bads are also sent to the Chroms save and pop unit for on-chip storage into Block

RAMs (BRAMs).

Chroms save and pop unit. This unit manages the data sent by the Chroms process

unit for storage. The sub-units of this unit are: Free list controller, Chroms save unit and

Chroms pop unit.

The Chroms save unit receives data to be stored in BRAMs from the Chroms process unit.

It saves this data to BRAMs based on the addresses received from the Free list controller, which

maintains a list of addresses available in the BRAMs. The Chroms pop unit passes the data

stored in the BRAMs to Best maps process unit based on the output of Chroms key search unit

and the control signals received from the Best maps process unit.

Chroms key search unit. This unit performs a search of the chromosome keys in the

“read-keys table”. The chromosome keys received from the Chroms process unit are searched

in the “read-keys table” to look for matches with the read-keys stored in the table. The

Keysearcher unit, a sub-unit, performs a binary search for each incoming chromosome key. If

there is a match, then the match location is passed to the Reads process unit to fetch the reads

data corresponding to the match location. The search ID corresponding to the match is passed

to the Chroms save and pop unit for retrieving the chromosome data. The reads data and

chromosome data are sent to the Best maps process unit for scoring.

Reads process unit. This unit fetches reads data for the read-keys that matched with

the chromosome keys. The Get reads IDs unit and Get reads data unit are sub-units.
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The match locations stored by the Chroms key search unit are read by the Get reads IDs

unit, and these locations are used as addresses to fetch the reads IDs corresponding to each

match location. After the read IDs are received, the Get reads data unit uses these read

IDs as indexes and sends fetch requests for read’s “upper”, “lower”, “bads”, “score1”, and

“score2” data associated with each read ID. Before sending a fetch request for this data, the

corresponding read ID is checked in the Content Addressable Memory unit (CAM), which is

part of the Best maps process unit to ensure the requested read ID is not currently being scored.

If the read ID is not in the CAM, then the fetch request is sent and that read ID is added to

the CAM. The fetched read’s “upper”, “lower”, “bads”, “score1” and “score2” data are stored

in fifos and the data from them is used by Best maps process unit.

Best maps process unit. This unit identifies the best maps for the reads and stores

the best mapping information in memory. The Scoring unit, Best maps store unit and Content

addressable memory unit (CAM) are sub-units. This unit retrieves the read’s “upper”, “lower”

and “bads” that was fetched by the Reads process unit. It also requests the chromosome’s

“upper”, “lower”, “bads” and “chromosome ID” corresponding to the matched chromosome

key from the Chroms save and pop unit, and sends it to the Scoring unit for calculating the

score of the match. The Scoring unit checks for mismatches between the read data and the

chromosome data and provides the number of mismatches as a score. If the score is within an

acceptable range, then the score, the chromosome ID and the strand for that read are written to

memory. Once these writes complete, the corresponding read ID entry for that read is removed

from the CAM.

The output of the hardware unit is the best maps information for every read ID whose

corresponding read-key matched with a chromosome key. The data written to main memory

for each read ID are its mapping score, location on the chromosome, and the strand of the

chromosome.
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CHAPTER 7. Hardware Design Implementation

The hardware design performs the mapping of chromosomes with short reads. The mapping

process in hardware is divided into five stages as shown in Figure 7.1:

• Chroms Process Unit

• Chroms Save and Pop Unit

• Chroms Key Search Unit

• Reads Process Unit

• Best Maps Process Unit

The chromosomes fetched from memory are processed in the Chroms process unit and are

sent to Chroms save and pop unit to store the chromosome data in BRAMs. The processed

chromosome data is also passed to the Chrom key search unit to look for chromosome keys in

the read keys table. As the search for each chromosome key is completed, the Reads process

unit works to fetch the reads data associated with the matched read-key; the Chroms save

and pop unit fetches the chromosome data associated with the matched chromosome key. The

reads data and chromosome data are then passed to the Best maps process unit for scoring and

storing results.

The remainder of this chapter describes further details of the modules that compose the

hardware unit.
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Figure 7.1: Overview of the read mapping function hardware design.
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Figure 7.2: Chroms Process Unit.

7.1 Chroms Process Unit

Chromosomes are read from memory, and are then processed to form the chromosomes

“upper”, “lower”, “bads” and chromosome key, which are sent to Chroms save and pop unit

and Chroms key search unit. Figure 7.2 shows the architecture of this unit. It is composed of

3 sub-units: 1) Chroms fetch, 2) Chroms split and shift, and 3) Chroms key process.

7.1.1 Chroms Fetch

The chromosome bases that were stored in an array by the software unit are fetched from

memory. The base address of the array is incremented and data is fetched from each address

till it reaches the end of the array.

The chromosomes are fetched in quad words containing 8 bases. The fetch requests are

made to memory controller 0 (mc0) as shown in Figure 7.2. The fetch address is incremented
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by 8 after every fetch; it starts with the base address of the array and keeps incrementing till

the address of the last chromosome base. The data from the memory controller is stored in

Chroms fifo. The unit stalls further fetch of chromosome bases, until some of the previously

fetched data stored in Chroms fifo is read.

7.1.2 Chroms Split and Shift

This unit reads the chromosome quad words from Chroms fifo and processes them in its

internal blocks listed below:

• Chroms encode unit

• Chroms split unit

• Chroms shift unit

Chroms Encode. This unit converts each chromosome base from an ASCII 8-bit repre-

sentation to 2 bits. A/a, C/c, G/g, T/t ASCII representations are encoded as 00, 01, 10 and 11

respectively. If a base is none of the 8 alphabets mentioned above, then a flag called “bad bit”

is set for that particular base. The output of the Chroms encode unit is sent to the Chroms

split unit.

Chroms Split. Each of the encoded input bases, which are 2-bit wide, are split into their

upper and lower bit. The most significant bit of each 2-bit input is packed in to an 8-bit signal

designated as “upper”. Similarly the least significant bit of the 2-bit input is packed in to

another 8-bit signal called “lower”. In Figure 7.2, the green colour bit represents upper while

the red colour bit represents lower, with the blue colour representing the bad bit. The bad bit

for each base is packed in to another 8-bit signal. These one byte signals are then passed to

the Chroms shift unit.

Chroms Shift. This unit combines each one-byte signal formed in the Chroms split unit,

with incoming bytes to form a 36-bit wide signal. Once the first 36 bits of each of the upper,

lower and bads signals are formed, a data valid signal is sent out from this unit along with
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the data to the Chroms key process unit and the Chroms save and pop unit. A counter is

incremented for every bit shifted in after the first 35. This count acts as the chromosome ID

for each 36-bit wide chromosome data created. Figure 7.2 represents this unit as a series of

shift registers.

7.1.3 Chroms Key Process

This unit receives the lower 32 bits of the 36-bit wide chromosome “upper” and “lower”.

These two 32-bit wide signals are combined to form a 64-bit chromosome word in the Chroms

word unit. Figure 7.2 illustrates how the green bits of chromosome “upper” signal are combined

with the red bits of the chromosome “lower” signal to form the 64-bit chromosome word.

This chromosome word is masked with the seed received from the host processor to form a

chromosome key. Each of the keys generated are pushed into a fifo. This key will be searched

for in the “read-keys table” to look for matches with the read-keys.

7.2 Chroms Save and Pop Unit

The purpose of this unit is to manage the flow of Chromosome data from Chroms process

unit to Best maps process unit through the BRAMs. This unit receives chromosome data from

the Chroms shift and split unit, and stores this data in Block RAMs, as shown in Figure 7.3.

There are four Block RAMs used in the design for storing chromosomes’ “upper”, “lower” and

“bads” and chromosome IDs. Each block RAM has 512 slots for storing data. Data is stored

in BRAMs if any of these 512 slots are free. Addresses corresponding to the free slots are

provided by the Free list controller unit and these addresses act as search IDs for chromosome

key search. Once a search is complete, the corresponding search ID becomes free and can be

reused. Also, the data stored in the BRAMs corresponding to this search ID are passed to the

Best maps process unit for scoring.

7.2.1 Free List Controller

This unit controls the addresses of the free slots available in the Block RAMs to save

chromosome data. These addresses are stored in the Free list fifo shown in Figure 7.3. The
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Figure 7.3: Chroms Save and Pop Unit.

Free list controller initially fills the fifo with 512 addresses, starting from 1 to 512. When all

512 addresses are added to the fifo, “stop” signal is issued to stop filling the fifo with more

addresses. When data to be stored in BRAM arrives, an address is popped from the Free

list fifo by the Chroms save unit and the data is stored at that BRAM’s location. This unit

receives a control signal from the Chroms pop unit to push freed addresses (search IDs) back

onto the Free list fifo. When a search corresponding to a search ID is not successful (i.e. no

match in the read-keys table), then the “free not found search ID push” signal is raised by the

Chroms pop unit and the ID is pushed into the Free list fifo. If a search is successful, then the

“free found search ID push” signal is raised and the ID is pushed into the Free list fifo once

the Best maps process unit is ready to score the chromosome key associated with the ID. As

seen in Figure 7.3, there are three different signals which can push data into the Free list fifo,

a three input multiplexer decides which of these is selected at any given time.
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7.2.2 Chroms Save

When the “chroms vld” flag is high, this unit checks for available addresses in the Free list

fifo. If an address is available, then it is popped and the chromosome data is stored at that

location in BRAM. The BRAM address popped from the Free list fifo is also pushed onto the

New search ID fifo to be passed to Chroms key search unit. This address acts as the search ID

for the search unit.

7.2.3 Chroms Pop

This unit checks for search IDs for which the associated chromosome key search has com-

pleted and sends a control signal to the Free list controller to reinsert them in to the free list

pool. When search IDs associated with an unsuccessful search are available, they are popped

from the Not found search ID fifo. A request is sent to the Free list controller to push them

into the Free list fifo. Similarly, search IDs associated with a successful search are checked for

their availability in the Found search ID fifo. Once these search IDs become available, they are

popped only if the Best maps process unit is ready to score the corresponding chromosome key

and read key.

7.3 Chroms Key Search Unit

This unit performs a major aspect of the read mapping process. It implements a binary

search of the read-keys table to determine if a given chromosome key can be found. Each

chromosome key has a search ID (obtained from the Chroms save and pop unit) associated

with it, which helps in tracking the search process for that key.

The chromosome key and the search ID required to begin a search are read from the New

chrom key fifo and New search ID fifo respectively. If a chromosome key is found in the read-

keys table, then its associated search ID and the location where it matched in the read-keys

table are stored in FIFOs. The values stored in these FIFOs are used by the Chroms save and

pop unit and Read process unit. This unit receives the base (start) and last (end) address of

the read-keys table as input from the software unit. It has 5 fifos and Keysearcher unit, as
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Figure 7.4: Chroms Key Search Unit.

shown in Figure 7.4. The intermediate data during a binary search propogates through these

fifos and the Keysearcher unit. Figure 7.4 shows the architecture of the chromosome key search

hardware.
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7.3.1 Keysearcher

This unit implements the binary search algorithm shown in Figure 7.5. Since this unit

primarily generates memory requests, it can become a bottleneck for the design depending on

the size of the read-keys table (i.e. search tree).

Separation of new and old chromosome key search. The Keysearcher unit can be

divided into two processes. First, the upper portion of Figure 7.4 is responsible for initiating

new chromsome key requests. Second, the bottom portion of Figure 7.4 manages chromosome

key searches that are in progress. This unit has a read request counter to count the number of

key search requests sent to the memory controller. This is to ensure that the five intermediate

data fifos and the Search key fifo interacting with memory controller 1 (MC1) do not overflow.

New chromosome key search. For every new chromosome key that is searched, it

and its associated search ID are popped from the New chrom key fifo and New search ID fifo

respectively. A middle address is calculated using the base (start) and last (end) address of

the read-keys table. A data request from this middle address is sent to MC1. Along with this
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request, the current starting address, middle address, end address, chromosome key and search

ID are pushed onto the Start addr fifo, Mid addr fifo, End addr fifo, Chrom key fifo and Search

ID fifo respectively. When the data requested from the middle address is received by MC1, it

is pushed into the Search key fifo.

Old Chromsome key search. The data in the Search key fifo is compared with the

chromosome key being searched to check for a match. Based on the results of the comparison,

the search is either continued or terminated.

Match. If there is a match, then the middle address for the matched chromosome key

obtained from Mid addr fifo is the location of the match. This address is written to the Found

read IDs addr fifo. Also the search ID corresponding to this chromosome key is written to the

Found search ID fifo.

Not a match. If the data from the Search key fifo and the chromosome key do not match

and the chromosome key is smaller than the data, then the calculate address unit shown in

Figure 7.4 selects the lower address range of the read-keys table. If the chromosome key is

greater than the search key, then the calculate address unit selects the upper address range of

the read-keys table.

Search continues. After this address range calculation, if the start address is less than

the end address, then the search for the chromosome key is continued and a new middle address

is calculated and another request for the same search ID is sent to MC1. Again the current

starting address, middle address, end address, chromosome key and search ID are all pushed

into their respective FIFOs. This process is repeated until the start address is greater than the

end address, or a match is found.

Search ends. If the start address becomes greater than the end address, then the search

for the chromosome key is terminated. The search ID is pushed onto the Not found search ID

fifo by issuing “not found” signal.
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Figure 7.6: Reads Process Unit.

7.4 Reads Process Unit

The function of this unit is to fetch reads data (i.e. reads “upper”, “lower”, “bads”) from

memory and send it to the Best maps process unit for scoring. It fetches read IDs from memory

using the read ID addresses output from the Chroms key search unit. Using these read IDs,

reads “upper”, “lower” and “bads” data are fetched from memory. Additionally, the two best

scores for the read IDs are fetched. A Free tag fifo, similar to the Free list fifo in the Chroms

save and pop unit, is filled with free tags. For each read ID, a tag is popped and associated

with the read ID. The tag and read ID are sent to the Best maps process unit. After the Best

maps process unit scores the read associated with the read ID and writes the score to memory,

the free tag is pushed back onto the Free tag fifo. Figure 7.6 shows the architecture of the

Reads process unit.
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7.4.1 Get Reads IDs

This sub-unit fetches two read IDs for each chromosome key and read-key match. The

address of the match location is read from the Found read IDs addr fifo. This address points to

the read-key stored at that address. This address when incremented by 8 is the address of first

read ID. The same address incremented by 16 is the address of last read ID. These two read

IDs are fetched using memory controller 2 (MC2) and memory controller 3 (MC3) respectively.

The read IDs received by MC2 and MC3 are pushed onto Read ID1 fifo and Read ID2 fifo

respectively.

7.4.2 Get Reads Data

This sub-unit fetches the data associated with each read ID. The read IDs are read from

Read ID1 fifo and Read ID2 fifo. The two read IDs indicate the set of reads mapping to the

chromosome key, for which there was a match in the read-keys table. The first read ID indicates

the beginning of the list of reads to score against the chromosome key. The second read ID

indicates the end of the list. Each read ID in the list is used to fetch the “upper”, “lower”,

“bads”, and the two best scores of the read associated with it. The two read IDs are pushed

onto Reads ID1 copy fifo and Reads ID2 copy fifo respectively to make a copy of the read IDs

to be used by the Best maps process unit.

In Figure 7.6, the “base reads data addr” bus specifies the base addresses of 5 arrays that

contain the data to be fetched for a read ID. Each read ID in the list is an offset and is added

to the 5 base addresses to fetch the data associated with it. The fetch request for “upper”,

“lower”, “bads” and two scores are sent to MC4 to MC8 in that order. This data when fetched

from memory are stored in Reads upper fifo, Reads lower fifo, Reads bads fifo, Score1 fifo and

Score2 fifo respectively.

Before sending the data fetch request, each read ID is looked up in the Content addressable

memory unit (CAM) to determine whether the read ID is being processed. The processing for

a read ID involves 1) fetching of data associated with that read ID, 2) scoring the data with

the corresponding chromosome data, and 3) storing the best maps data. If the read ID is in
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Figure 7.7: Best Maps Process unit.

CAM, the fetch request is stalled until the corresponding read ID entry is cleared from CAM.

When a data fetch request is sent, a read ID is added to CAM to indicate the start of

processing of that read ID. A free tag is popped from Free tag fifo and sent to CAM to assign

a tag to the read ID being added to CAM. This free tag is also added to Used tag fifo in the

Best maps process unit.

7.5 Best Maps Process Unit

The best maps processing is performed by 1) scoring the mapped reads’ “upper”, “lower”

and “bads” with the chromosomes’ “upper”, “lower” and “bads”, 2) deciding the best maps

based on the score, and 3) storing the result for the best maps, as shown in Figure 7.7.

The Reads ID1 copy fifo and Reads ID2 copy fifo are popped and “score unit ready” signal

is sent to the Chroms save and pop unit. Upon receiving the “score unit ready” signal, the
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Chroms save and pop unit sends the chromosome data (i.e. upper, lower and bads) from the

Block RAMs to the Scoring unit for scoring. The Chromosome ID is also provided.

Read ID1 from Reads ID1 copy fifo and read ID2 from Reads ID2 copy fifo are compared.

If they are not same, read ID1 is incremented till its value is equal to read ID2. For each read

ID, from read ID1 to read ID2, data is read from Reads upper fifo, Reads lower fifo and Reads

bads fifo. This data is passed along with the corresponding read ID to the Scoring unit. This

logic is encapsulated in the cloud shown in Figure 7.7.

This unit has a Used tag fifo in which data is pushed from the Reads process unit. It stores

the tags for the read IDs which are being processed. The processing of a read ID completes

when its best map data are written to memory successfully or when no best map is found.

7.5.1 Scoring

This unit computes the mismatches between a read and a given chromosome location. The

read’s “upper” and “lower” are compared bit-wise with the chromosome’s “upper” and “lower”.

The “upper”, “lower” and “bads” of the read and the chromosome go through a series of logic

operations (XOR and OR) as shown in Figure 7.8. The set bits of the resultant signal indicate

where mismatches occur between the chromosome and read. These bits are summed to give

the score. It takes 7 clock cycles to generate a score. Once the score is calculated, “score valid”

signal is sent to the Best maps store unit, as shown in Figure 7.7.

7.5.2 Best Maps Store

This sub-unit uses the score computed by the Scoring unit to decide whether a mapping

is to be considered. If so, then the score, the map location on the chromosome (i.e. the

chromosome ID), and the strand of the chromosome are written to memory. Score1 and score2

are popped from Score1 fifo and Score2 fifo respectively. These two scores correspond to the

two best scores associated with the read ID that is being processed. The two best scores are

compared with the score computed by the Scoring unit (current score), and one of these two

scores is updated in memory if the current score is better. This is done in compare scores,

shown in Figure 7.7.
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Figure 7.8: Scoring unit.

7.5.3 Content Addressable Memory (CAM)

The CAM is used to prevent stale score values from being fetched for read IDs that are in

the process of being scored. The Reads process unit fetches data for read IDs only after checking

in the CAM to see if the scoring and storing for a previous chromosome key that matched that

particular read ID is not in progress. The Reads process unit sends a query request for a read

ID to this unit. After one clock cycle, the CAM issues a match signal indicating whether the

read ID is present in the CAM or not. The archtitecture of CAM is shown in Figure 7.9.

The CAM contains 100 slots for storing read IDs for which data processing is currently in

progress. The availability of a slot is controlled by a free tag fifo located in the Reads process

unit. It takes the read ID and the tag associated with it as input from the Reads process unit.

The read ID is stored in a free slot and the tag acts as the slot ID. After a read ID completes

processing, the tag associated with that read ID is cleared from the CAM.
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CHAPTER 8. Evaluation Methodology

8.1 Experimental setup

Platform. The HC-1 system (described in Chapter 5) is the platform used for evaluating

the design presented in Chapter 6 and 7. The Intel-based host processor on HC-1 runs the

software portion of the design, while the hardware portion is implemented on the reconfigurable

logic of the coprocessor. The software running on the host processor calls the coprocessor

(hardware unit) via a coprocessor function call that provides the required input parameters

and initiates coprocessor execution. Figure 6.1 illustrates this setup. The hardware design

uses Convey’s optional features, such as the “crossbar switch” to provide a simplified memory

interface, the “read order queue” to ensure data is received in the order that it was requested,

and the “write complete interface” to indicate the completion of a write to memory.

Software. For performing experiments, the original RMAP software (described in Chap-

ter 4) and the modified RMAP software (described in Section 6.1) run the basic RMAP code

with the following parameters: 1) mapping based on mismatches, 2) three maximum mis-

matches, 3) two best maps information for each read, 4) one seed, and 5) read width of 36.

Both software versions are compiled using Convey’s compiler “cnyCC” for comparable analysis.

The chromosome and reads input file are placed in the 250GB host processor RAM, enabling

fast file access. In the modified RMAP design, the arrays accessed by the hardware design

- 1) chromosome array, 2) read-keys table array, 3) reads upper array, 4) reads lower array,

5) reads bads array, 6) score1 array, 7) score2 array, 8) chrom ID1 array, 9) chrom ID2 array

and 10) strand array - are located on the coprocessor side of the memory. The coprocessor

memory is organized in 16 banks, with eight memory controllers (MCs) accessing two banks

each. The data arrays can typically fall on any of the eight memory controllers. However, for
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this design, these arrays are aligned on different memory controllers while allocating memory

to help balance memory requests across all eight MCs. This results in faster memory access

and helps in reducing run-time.

Input dataset generation. The chromosomes and reads files are inputs to RMAP. Both

real and synthetic versions of these input datasets were used for the performance evaluation

experiments. The synthetic datasets were generated using a genome generator, and a short

read generator tool. The genome generator tool generated genomes of a desired length. The

short reads generator tool using read width, coverage, error rate and a genome source file as

input generated a set of short reads. The real datasets used for performance evaluation were

chromosomes comprising the human genome downloaded from http://hgdownload.cse.ucsc.

edu/goldenPath/hg19/chromosomes/. The short-reads file containing the reads to be mapped

on to the chromosomes of the human genome was downloaded from ftp://ftp-trace.ncbi.

nih.gov/1000genomes/ftp/data/NA06985/sequence read/.

8.2 Summary of experiments.

This section describes the experiments conducted for evaluating performance.

Throughput evaluation. In this set of experiments, two input parameters to the design

were varied: 1) number of reads, and 2) number of chromosome bases. The experiments were

performed for both the original RMAP and the modified RMAP. The time taken by the read

mapping function of RMAP implemented in hardware was compared with the time taken by

the RMAP software mapping function.

1) Varying number of reads. For this experiment, the genome size (i.e. number of chromosome

bases) is kept fixed and the number of reads is varied. Synthetic datasets were used for

this experiment. The number of reads was varied by changing the parameter ‘coverage’.

Coverage values of 1, 20, 40, 60, 80 and 100 were used to obtain increasing numbers of reads

to map on to a 50 million base long reference genome.

2) Varying genome size. For this experiment, the size of the reference genome is varied and a

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/NA06985/sequence_read/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/NA06985/sequence_read/
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fixed number of reads is used. A real reference genome and short reads were used in this

experiment. Chromosome21, Chromosome18, Chromosome15, Chromosome13 and Chro-

mosome8, from the 23 chromosomes comprising the human genome were used as reference

genomes. A fixed set of 41 million, 36-base wide reads were mapped on to each of these

reference genomes.

Bottleneck analysis. These experiments identified and evaluated performance bottle-

necks in the hardware design.

1) Varying number of mapping sites on the reference genome. This experiment was performed

for two cases: 1) with no reads mapping, and 2) with many reads mapping on to the

reference genome. For case 2, a synthetic genome having 50 million bases, and 55 million

short reads (coverage of 40) were used. Case 1 used the same short reads set as case 2.

However, all the bases in the genome were replaced by the base ‘A’, to prevent reads from

mapping on to the genome. For both cases, the time taken by the hardware read mapping

function was recorded. It should be noted that RMAP, using a reference genome with its

bases as ‘A’, results in a match for all the chromosome keys being searched. The reason is

that the read-key of value ‘0’ is added as the first read-key by default to the read-keys table

in RMAP. Hence, genome with all A’s will have all chromsome keys as ‘0’ and will match

with the first read-key. It is determined only after scoring that there are no reads mapping

on the genome. However, for this experiment, the modified RMAP did not include ‘0’ as a

read-key to the read-keys table resulting in no match for all the chromsome keys. This was

done to see effect of such a dataset on the Chroms key search unit.

2) Binary search. The hardware implemented binary search involves frequently accessing sys-

tem memory. The root node of the binary search tree is accessed for each chromosome key.

This leads to frequent requests to the memory controller containing the root node in this

implementation. This experiment was performed to observe the effect of distributing search

requests evenly across all 8 memory controllers. The Keysearcher unit was modified to send

each search request to a different address. In this experiment, a reference genome having 50

millions bases and 55 million short reads (coverage of 40) were used as input. The results
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were analyzed using the report generated by the Convey performance monitor program.

3) CAM size. This experiment was conducted to observe the effect of varying CAM size on

the time taken by the read mapping function in hardware for a fixed input dataset. CAM

sizes of 50, 100, 150 and infinite size (i.e. no CAM) were used. To simulate a design having

no CAM, the design was modified to send fetch requests for data associated with read IDs

without checking if that read ID was in the CAM (refer Section 7.4). A real dataset of

50 million base genome and 20 million short reads were used for the experiment. For this

dataset, 20% read-keys had more than 100 reads associated with them. This was useful to

quickly fill up the CAM.

Metric for evaluation. The metric used for the performance evaluation experiments was

wall clock time. It was measured using get time of day(), a C timing function. The timer was

placed across the read mapping function in the hardware-software code and also in the original

RMAP software code to measure the execution time for both approaches. For the experiment

evaluating binary search, a performance report generated by the Convey performance monitor

tool was used as the metric.
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CHAPTER 9. Results and Analysis

9.1 Analysis of Hardware Design

This section presents a theoretical analysis of the hardware design, to identify possible

bottlenecks.

Chroms key search unit analysis. This unit performs a binary search of the chromo-

some key in the read-keys table. The maximum number of search requests for a chromosome

key is “log n”, which is the worst case complexity for binary search. Here ‘n’ is the size of the

read-keys table, which is dependent on the number of reads input to the design and also on

how many of these reads form similar read-keys. The number of such chromosome key searches

is dependent on the genome size. More search requests translate to more fetches from memory,

increasing computation-time. Thus, the computation-time of this unit depends on the number

of chromosome bases and reads.

The tables in Figure 9.1 and Figure 9.2 show the effect of the number of reads and chromo-

some bases on the computation-time of Chrom key search unit. Following gives a description

of the columns in the table.

• new search request - number of clock cycles required to send new search requests for the

input chromosome bases.

• old search request - number of clock cycles used for sending and processing the old search

requests; depends on the number of search requests required to complete a search.

• total search memory fetches - number of clock cycles required to complete the search of

all chromosome keys for a given dataset.
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(us)

1 1 1001 0 200 3 1204 8

10 4 1001 9 800 3 1813 12

100 7 1001 18 1400 3 2422 16

1000 10 1001 27 2000 3 3031 20

10000 14 1001 39 2800 3 3843 26

100000 17 1001 48 3400 3 4452 30

1000000 20 1001 57 4000 3 5061 34

Figure 9.1: Behavior of Chroms key search unit for 1000 base genome with varying number of reads.
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(clock cycles)

end search

process
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(us)

1 2 57 4000 3 4062 27

1000 1001 57 4000 3 5061 34

10000 10001 57 4000 3 14061 94

100000 100001 57 4000 3 104061 697

1000000 1000001 57 4000 3 1004061 6727

10000000 10000001 57 4000 3 10004061 67027

100000000 100000001 57 4000 3 100004061 670027

Figure 9.2: Behavior of Chroms key search unit for 1 million reads with varying genome size.
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• end search process - number of clock cycles required to process the results once a search

ends.

For the calculations performed in Figure 9.1 and Figure 9.2, worst case search complexity

i.e. “log n” is considered. Memory load latency is considered to be 200 clock cycles, and

clock frequency to be 150 MHz. Also, no idle cycles for the MCs and no stalls from them is

considered.

In Figure 9.1, the number of chromosome bases is kept constant at 1000 and the number of

reads is varied. Since the number of search requests for a chromosome key has a logarithmic

relation to the number of reads, the run-time of Chrom key search unit increases logarith-

mically with the number of reads. In Figure 9.2, the number of reads is kept constant at 1

million and the number of chromosome bases is varied. The run-time Chrom key search unit

increases linearly with the number of chromosome bases. This is due to the fact that addition

of chromosome bases adds more elements to be searched in the read-keys table, resulting in

more data fetches from memory.

Reads process unit analysis. In this unit, before sending any fetch request for reads’

“upper”, “lower”, “bads” and two best scores associated with a read ID, the read ID is checked

in Content addressable memory (CAM). If the read ID is not in CAM, then it is added to CAM.

However if there are no free slots in the CAM to place the read ID, this unit is stalled until

a free slot is available. A large CAM can therefore be useful in reducing the amount of stalls

due to unavailability of a free slot. However, this unit can also be stalled due to 1) presence

of a read ID in CAM for which data fetch request is to be issued, and 2) stalls from memory

controllers 4 to 8. Hence, size of CAM might not be a possible bottleneck. Experiment 3, part

of Bottleneck analysis, in Section 8.2 is performed to see the effect of CAM sizes on the overall

design run-time.

9.2 Results and Analysis

Throughput evaluation. This section shows the results of the experiments run for

throughput evaluation.
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1) Number of reads. Figure 9.3, Figure 9.4 and Figure 9.5 show the impact on performance

of varying number of reads with a fixed reference genome. Figure 9.3 illustrates that with

increasing number of reads, the execution time of the read mapping function on hardware

is considerably less than that on software. Figure 9.4 shows speedup of the hardware design

increasing with number of reads, reaching a speedup of ∼5x. Figure 9.5 shows variation

in time taken by the read mapping function in hardware with respect to number of reads.

This substantiates the analysis in Section 9.1 (refer Figure 9.1) that the hardware run-time

shows negligible change as the number of reads increase.

For this experiment, an estimate of the improvement in the original RMAP software perfor-

mance by replacing its read mapping function with the hardware-implemented read mapping

function was determined, using Equation 9.1. The results are shown in Figure 9.6.

Timproved sw = Ttotal sw − Tsw read mapping + Thw read mapping (9.1)

Where, Timproved sw is the run-time of the software obtained by replacing the map reads

function time in software with that in hardware, Ttotal sw is the run-time of the RMAP soft-

ware, Tsw read mapping is the run-time of the map reads function in software, and Thw read mapping

is the run-time of the map reads function in hardware (i.e. FPGA of the coprocessor).
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Figure 9.3: Hardware and software read-mapping function run-time comparison for 50 million base genome with
varying number of reads.
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Figure 9.4: Speedup of the hardware-implemented read-mapping function for 50 million base genome with
varying number of reads.
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Figure 9.5: Hardware-implemented read-mapping function run-time for 50 million base genome with varying
number of reads.
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Figure 9.6: Improvement in the original RMAP software performance with the hardware read mapping function
for 50 million base genome with varying number of reads.
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2) Varying genome size. Figure 9.7, Figure 9.8 and Figure 9.9 show the impact on performance

of varying genome sizes for a fixed number of reads. Figure 9.7 illustrates that with increas-

ing genome size, the execution time of the hardware-implemented read mapping function is

less than a software implementation. Figure 9.9 shows variation in time taken by the read

mapping function in hardware with respect to genome size. This substantiates the analysis

in Section 9.1 (refer Figure 9.2) that the genome size has significant impact on hardware

run-time.

Figure 9.8 shows speedup of ∼2x with hardware design over the software read mapping

function for increasing genome size. The speedup observed here is less than that observed

in the experiment with varying number of reads. This is because the hardware run-time

increases with genome size. Also, for the real datasets used in this experiment, many of

the read-keys have more than 100 reads associated with them. This leads to filling up the

CAM quickly, causing the design to wait for a free slot. The wait for a read ID to be cleared

from CAM, in order that the processing of the same read ID starts again, is higher for these

datasets. This further contributes towards reduced speedup.

For this experiment, an estimate of the improvement in the original RMAP software perfor-

mance by replacing its read mapping function with the hardware-implemented read mapping

function was determined using Equation 9.1. The results are shown in Figure 9.10.

The inference from this set of experiments is that more computationally intensive the map-

ping process, greater the gains obtained by implementing it on hardware.

Bottleneck analysis. This section shows the results of the experiments run for bottleneck

analysis.

1) Varying number of mapping sites on the reference genome. Table 9.1 shows the effect on

run-time for 1) no reads mapping and 2) reads mapping, on the reference genome. When

there are no reads mapping on the genome, it indicates that the Keysearcher unit could not

find a match for chromosome keys. For such a case, the number of search requests sent for

each chromosome key is “log n”, where ‘n’ is the size of the read-keys table. This leads to

increased data fetches from memory, resulting in increased hardware time, as compared to
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Figure 9.7: Hardware and software read-mapping function run-time comparison for 41 million reads with varying
genome size.
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Figure 9.9: Hardware-implemented read-mapping function run-time for 41 million reads with varying genome
size.
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Table 9.1: Effect of varying number of mapping sites on hardware design run-time for a 50 million base genome
with 55 million reads.

No. of mapping
sites

Time sending
‘X’ requests
(secs)

Time sending
‘2X’ requests
(secs)

0 25.563 16.94
33221272 12.444 11.424

the case with reads mapping on the reference genome.

The Keysearcher sends a certain number of search requests. It is stalled until the requested

search data is received back, following which more search requests are issued. Table 9.1

shows the impact of sending more search requests on run-time. Following is a description

of the columns:

• Time sending ‘X’ requests - indicates run-time of the design when the Keysearcher unit

issues 250 requests, and is stalled until some of the requested data is received.

• Time sending ‘2X’ requests - indicates run-time of the design when the Keysearcher

unit issues 500 requests, and is stalled until some of the requested data is received.

The results of this experiment substantiate the analysis of Chrom key search unit in Section

9.1. In case 2, where there are reads mapping on the genome, the complete hardware design

runs. For case 1, Reads process unit and Best maps process unit do not function due to no

match being found in the Chrom key search unit. However, the hardware run-time of case 1

is more than case 2. Thus, the Chrom key search unit could become a bottleneck depending

on the search complexity and the number of search requests it can issue.

2) Binary search. Table 9.2 shows the convey performance report when executing the binary

search without modifications to the search requests. Columns, “Stall LD” and “Stall ST”

represent load and store stall cycles respectively. For this implementation, maximum stalls

occur on Memory Controller 7, as seen in “Stall LD” column of Table 9.2. The reason for

this is that the root node of binary search falls on this MC. Table 9.3 shows the convey

performance report for the design sending search requests to the different addresses in order

to align them on different memory controllers. For this implementation, no stall is observed

on any MC as the search requests are distributed.
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Table 9.2: Performance report for design with no modifications to search requests.

Memory controller Loads Stores Stall LD Stall ST
mc0 e 25,414,973 6,820,733 2059 0
mc0 o 156,701,006 13,641,584 2058 0
mc1 e 25,414,192 6,821,437 0 0
mc1 o 171,505,741 13,641,399 0 0
mc2 e 25,415,920 6,820,703 0 0
mc2 o 157,031,459 13,641,500 0 0
mc3 e 25,414,655 6,820,555 457 0
mc3 o 194,177,891 13,642,129 456 0
mc4 e 25,415,221 6,820,841 0 0
mc4 o 158,988,995 13,641,338 0 0
mc5 e 25,415,188 6,820,901 0 0
mc5 o 170,757,663 13,642,722 0 0
mc6 e 25,415,083 6,820,642 0 0
mc6 o 158,277,608 13,641,422 0 0
mc7 e 25,414,532 6,821,249 114,087,990 0
mc7 o 193,668,167 13,641,992 114,087,612 0

Table 9.3: Performance report for design with modifications to search requests.

Memory controller Loads Stores Stall LD Stall ST
mc0 e 781,271 0 0 0
mc0 o 159,657,183 0 0 0
mc1 e 781,269 0 0 0
mc1 o 159,638,953 0 0 0
mc2 e 781,267 8 0 0
mc2 o 159,723,163 0 0 0
mc3 e 781,271 8 0 0
mc3 o 159,703,473 0 0 0
mc4 e 781,271 0 0 0
mc4 o 159,738,353 0 0 0
mc5 e 781,274 0 0 0
mc5 o 159,673,182 0 0 0
mc6 e 781,289 0 0 0
mc6 o 159,726,429 0 0 0
mc7 e 781,288 0 0 0
mc7 o 159,673,060 0 0 0
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Table 9.4: Effect of varying CAM size on hardware-implemented read mapping function run-time for a 50 million
base genome with 20 million reads.

Cam Size Time(seconds)
50 10.035
100 9.883
150 9.878

No CAM 9.801

Table 9.5: Virtex-5 LX330 resource usage for the hardware-implemented read mapping function design having
CAM size of 100.

FPGA Resource Available Used(%)
Lookup Tables 207,360 39

Flip Flops 207,360 45
Block RAM (36 Kbit) 288 34

3) CAM size. In Table 9.4, it can be observed that the CAM size has little effect on hardware

run-time. This substantiates the reasoning stated in analysis of Reads process unit in Section

9.1.

9.3 Resource usage

This section lists the usage statistics of resources such as FPGA logic, memory controllers,

and global memory for the implemented design.

FPGA logic. Table 9.5 lists the percentage of the total LUTs, Flip-Flops, and BRAMs

available on the Virtex 5 LX330, used for the hardware design. A significant portion of the

resources is occupied by Convey’s memory controller interface and hardware-software interface.

Memory controller. The Convey HC-1 system has 8 memory controllers, with two ports

each. The read mapping function on the coprocessor uses 6 memory controllers with both ports,

effectively using 12 memory controllers. Of these, 3 are used for storing best maps data for

each read while the remaining are used for fetching data from memory. The memory controllers

used for stores use the “write complete interface”.

Global memory. The host processor and coprocessor are associated with 256 GB and 64 GB

of the global memory respectively. The memory layout is such that, due to physical proximity,

it provides the host processor and coprocessor fastest access to their respective memory spaces.
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Table 9.6: Memory usage of the RMAP hardware-software co-design for 50 million base genome with varying
number of reads.

Reads (million) Host Memory(GB) Coprocessor Memory(GB)
1.4 0.3 0.18
28 5.8 2.7
55 11.6 5.3
83 17.4 7.9
111 23.2 10.6
139 29 13.2

Table 9.7: Memory usage of the RMAP hardware-software co-design for 41 million reads with varying genome
size.

Genome (million) Host Memory(GB) Coprocessor Memory(GB)
50 11.4 5
70 11.4 5.1
100 11.4 5.4
117 11.4 5.6
150 11.4 5.9

For the hardware-software RMAP design on the HC-1 system, data allocated on the host

processor memory is solely dependent on the number of reads. However, coprocessor memory

usage is dependent on both number of reads and genome size. The read mapping function in

hardware uses only coprocessor memory. Tables 9.6 and 9.7 show the amount of coprocessor

memory used while the mapping function is running in hardware, indicated in the “Coprocessor

Memory” column.

Table 9.6 lists the memory usage for the experiment where the number of reads are varied

with the genome size constant, described in Section 8.2. The increase in coprocessor memory

usage with increasing number of reads can be attributed to several reasons. Firstly, each read

is associated with 8 pieces of data: 1) upper, 2) lower, 3) bads, 4) score1, 5) score2, 6) chrom

ID1, 7) chrom ID2, and 8) strand of the chromosome. Each of these occupy 8-bytes. Next, the

memory allocated to read-keys table is also dependent on the number of reads. Table 9.7 lists

the memory usage for the experiment where the genome size is varied with the number of reads

constant, described in Section 8.2. The small increase in coprocessor memory usage is due to

increase in genome size as the genome array is allocated on the coprocessor memory.
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9.4 Pending Issues and Concerns

This section puts forth some open issues pertaining to the hardware design.

Performance runs for large datasets. The datasets used here for the performance exper-

iments are relatively small compared to real world datasets that RMAP is typically used to

run. The design implemented on the coprocessor has an unresolved bug which prevents it

from running on datasets larger than the ones shown. Based on the results of the throughput

evaluation experiments, a speedup of at least 2x is expected for large datasets.

Binary search. The experiments performed for identifying bottlenecks in the binary search

process, described in Section 9.2, determines the effect of distributing search requests evenly

across all 8 memory controllers. The design modified for this purpose results in very few

matches in the Chroms key search unit for the dataset used. This dataset, otherwise, results

in matches for 60% of the chromosome keys. This prevents the Reads process unit and the

Best maps process unit from being called into action, making them almost redundant for this

case. Hence, this experiment should be conducted with a design which, along with not causing

traffic on a particular MC, also results in significant matches during the chromosome key search

process. This will enable the Reads process unit and the Best maps process unit to function,

allowing the analysis to incorporate their effect.

Bandwidth utilization. The coprocessor design does not operate at the full bandwidth of 20

GB/s, available to an AE (FPGA) of the Convey HC-1 system. In order to fully utilize this,

the design needs to make one request per clock cycle to each MC port (odd and even). There

are mainly three reasons which prevent the design from achieving full bandwidth utilization:

1) MC Stalls - These arise because of the MCs not being able to service requests at the rate

at which they are sent from the design.

2) Idle cycles - These correspond to the cycles during which the MCs are idle (i.e. when they

are not servicing requests). One of the possible reasons for this is that the design does not

allow data requests larger than the size of the fifos, which store the requested data, until

some of the data is read from the fifos, resulting in idle cyles. The other possible reason is

the Reads process unit taking 3-4 cycles to send each fetch request for the data associated
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with the read IDs, because of its finite state machine (FSM) based design. This contributes

towards idle cycles, during which fetch requests are not being sent for the read’s data.

3) Unused crossbar MCs - Full bandwidth utilization requires the use of all (16) crossbar MCs

available to the AE. However, the design uses only a subset of the MCs, thus impacting the

percentage of the peak bandwidth utilized.
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CHAPTER 10. Conclusion and Future Work

This chapter concludes the thesis and discusses some areas of future work in order to further

accelerate RMAP.

10.1 Conclusion

This work has described a technique to accelerate the short-read mapping function of the

RMAP short read mapping tool. As a first step, RMAP was profiled to determine the execution

time of each of its functions. Based on the results of this profiling, short-read mapping was

found to be the most computatonally intensive function, and hence was chosen for acceleration.

To achieve the acceleration, the read mapping function was implemented on the reconfig-

urable hardware (FPGA) of a Convey HC-1 system. The hybrid feature of the HC-1 platform

provided a highly abstract way of designing a hardware-software co-design solution for RMAP,

with the read mapping function running on the reconfigurable fabric of the coprocessor, and the

remaining RMAP functions running on the host processor. RMAP was modified to separate

the read mapping function for porting, and to align it with the HC-1’s hybrid architecture.

The hardware was designed in the form of a pipelined architecture implementing the mapping

function.

Experiments were performed to observe the speedup of the read mapping function im-

plemented on the custom hardware architecture, and for finding potential bottlenecks in the

hardware design. For throughput evaluation, data was collected using different datasets by 1)

varying the number of reads for a fixed genome size, and 2) varying genome size for a fixed

number of reads. The first experiment showed a speedup of ∼5x for 139 million reads (the

largest reads dataset used in this experiment) with a 50 million base genome, as compared to
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a software implementation of the read mapping function. The second experiment showed a

speedup of ∼2x for 150 million base genome (the largest genome size used in this experiment)

with 41 million reads. For bottleneck analysis, experiments were run to determine the impact

of the chromosome key search process and the size of the content addressable memory unit

used, on coprocessor design run-time. It was determined that the search process could be a

bottleneck affecting performance. However, variation in memory unit size proved to have no

significant impact on performance.

10.2 Future Work

Three possible directions for future work to further increase the performance of the read

mapping function implemented in hardware are suggested in this section.

1) Splitting the genome across four FPGAs. This work makes use of only one FPGA

of the HC-1 system out of the four that are available. For further speedup, all the four

FPGAs, also called as Application Engines (AEs), could be used. In order to achieve this,

the reference genome, input to the design, could be divided across the four AEs. Each AE

would perform the same function of 1) processing the genome, 2) searching the chromosome

key in the read-keys table, 3) scoring the matches, 4) determining the best maps for each

read based on the score, and 5) storing the best maps result. The read-keys table and the

Content addressable memory unit (CAM) would be common to all the four AEs. Each AE

would place the read IDs, that are being processed, in the CAM. If there is a contention

in writing to the CAM, priority would be given to the AE which streams the first division

of genome, and so on. Memory load/store contentions would be taken care of by the HC-1

“coprocessor memory ordering” feature.

2) Binary search data buffering. Based on the results of Section 9.2, the binary search

process in the Chroms key search unit could be a bottleneck. Performing the search for

each chromosome key in the hardware design involves accessing the same middle elements

multiple times, with the root node of the binary search tree (i.e. the read-keys table) always

being accessed. The workaround for this could be, 1) a data buffer or cache in the AE for

storing the inital N middle elements, or 2) replicating the first N levels of the binary search
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tree in the AE. This could eliminate the need for fetching the middle element from memory

for each chromosome key, which could be in millions to billions in number depending on the

reference genome size. For workaround 1), a BRAM could be used as a cache to save these

middle elements. An address-mapping function could be used to map the binary search

address on to the BRAM address. When a search for a chromosome key is under process,

the addresses involved can be checked to determine if they map with the BRAM addresses,

and then the the data in the BRAM can be used. For workaround 2), the initial stages of

the search for a chromosome key would be on the AE. The later stages, requiring access

to the read-keys table outside the first N levels, would be transferred to the coprocessor

memory.

3) Software optimization. In this work, RMAP was modified for implementation on the HC-

1 hybrid platform. The functions of RMAP that run on the host processor are not optimized.

Also, the host processor operates on some of the arrays stored on the coprocessor side of

memory. Hence, the total run-time of the RMAP implementation on the HC-1 system

turns out to be more than the original optimized version of RMAP. The software functions

running on the host processor with this hybrid design could be optimized to take equal or

lesser amount of time than the original RMAP’s software functions. Thus, speedup for the

overall RMAP hardware-software co-design could be targeted.
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